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Abstract 

Modeling fracture-matrix interaction within a complex multiple phase flow system is a 

key issue for fractured reservoir simulation. Commonly used mathematical models for 

dealing with such interactions employ a dual- or multiple-continuum concept, in which 

fractures and matrix are represented as overlapping, different, but interconnected 

continua, described by parallel sets of conservation equations. The conventional single-

point upstream weighting scheme, in which the fracture relative permeability is used to 

represent the counterpart at the fracture-matrix interface, is the most common scheme by 

which to estimate flow mobility for fracture-matrix flow terms. However, such a scheme 

has a serious flaw, which may lead to unphysical solutions or significant numerical 

errors. To overcome the limitation of the conventional upstream weighting scheme, this 

paper presents a physically based modeling approach for estimating physically correct 

relative permeability in calculating multiphase flow between fractures and the matrix, 

using continuity of capillary pressure at the fracture-matrix interface. The proposed 

approach has been implemented into two multiphase reservoir simulators and verified 

using analytical solutions and laboratory experimental data. The new method is 

demonstrated to be accurate, numerically efficient, and easy to implement in dual- or 

multiple-continuum models.  

 

Key Words: Naturally fractured reservoir, double-porosity model, dual-continuum 

model, fracture-matrix interaction, relative permeability 



 2

1. Introduction 

 

Since the 1960s, significant progress has been made in numerical modeling of flow 

and transport processes in fractured rock. Research efforts, driven by the increasing need 

to develop petroleum and geothermal reservoirs, other natural underground resources, 

and to resolve subsurface contamination problems, have developed many numerical 

modeling approaches and techniques (Barenblatt et al., 1960; Warren and Root, 1963; 

Kazemi, 1969; Pruess and Narasimhan, 1985).  

Mathematical modeling approaches in general rely on continuum approaches and 

involve developing conceptual models, incorporating the geometrical information of a 

given fracture-matrix system, setting up mass and energy conservation equations for 

fracture-matrix domains, and then solving discrete nonlinear algebraic equations. Most 

computational effort is consumed in solving the governing equations that couple 

multiphase fluid flow with other physical processes either analytically or numerically. 

The key issue for simulating flow in fractured rock, however, is how to handle facture-

matrix interaction under different conditions (involving multiple phase flow). This is 

because the fracture-matrix interaction distinguishes the flow through fractured porous 

media from the flow through heterogeneous single-porosity porous media. Note that 

many literature studies deal only with pure fracture media without fracture-matrix 

interaction by ignoring the effects of low-permeability matrix rocks. In those cases, the 

fractures can be treated as part of a classical single-porosity medium, which is not dealt 

with in this work.   

To model fracture-matrix interaction, modelers have developed and applied many 

different conceptual models and modeling approaches as summarized in Berkowitz 

(2002). Commonly used mathematical methods include: (1) an explicit discrete-fracture 

and matrix model (e.g., Snow, 1969; Stothoff and Or, 2000), (2) the dual-continuum 

method, including double- and multiporosity, dual-permeability, or the more general 

“multiple interacting continua”' (MINC) method (e.g., Barenblatt et al., 1960; Warren 

and Root, 1963; Kazemi, 1969; Pruess and Narasimhan, 1985; Wu and Pruess, 1988), and 

(3) the effective-continuum method (ECM) (e.g., Wu, 2000a).   
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The explicit discrete-fracture approach is, in principle, a rigorous model. However, 

the actual application of this method is currently limited because of the computational 

intensity involved as well as the lack of detailed knowledge of fracture and matrix 

geometric properties and their associated spatial distributions at a given site. On the other 

hand, the dual-continuum method is conceptually simpler and computationally much less 

demanding than the discrete-fracture approach, and is able to handle fracture-matrix 

interaction more easily than the discrete-fracture model. For these reasons, the dual-

continuum approach has been used as the main approach for modeling fluid flow, heat 

transfer, and chemical transport through fractured reservoirs (e.g., Wu et al., 1999).  

Dual-continuum approaches include the classical double-porosity model (Barenblatt 

et al., 1960; Warren and Root, 1963), the dual-permeability concept, and the more 

rigorous dual-continuum generalization of the MINC (Pruess and Narasimhan, 1985) for 

modeling flow in fractured porous media. In the double-porosity model, a flow domain is 

composed of matrix blocks with low permeability, embedded in a network of 

interconnected fractures. Global flow and transport in the formation occur only through 

the fracture system, conceptualized as an effective continuum. This model treats matrix 

blocks as spatially distributed sinks or sources to the fracture system without accounting 

for global matrix-matrix flow. In comparison, the MINC concept (Pruess and 

Narasimhan, 1985) is able to describe gradients of pressures, temperatures, or 

concentrations between fractures and matrix systems and inside the matrix–by further 

subdividing individual matrix blocks with one- or multidimensional strings of nested 

meshes. Consequently, the MINC model in general provides a better numerical 

approximation for transient fracture-matrix interactions than the double-porosity model.  

Because of its computational efficiency and its ability to match many types of 

laboratory- or field-observed data simultaneously (e.g., Kazemi, 1979; Wu et al., 1999), 

the dual-continuum model has perhaps been the most widely used method in petroleum 

and geothermal engineering and groundwater hydrogeology, and it has also been 

implemented in many commercially available reservoir simulators.   

In numerical modeling of fracture-matrix flow, one of the critical issues is how to 

estimate flow mobility at the fracture-matrix interface. In conventional simulation 

practice, especially in petroleum reservoir simulation, the fully upstream weighting 
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scheme (or simply upstream weighting or upwinding) is routinely used (e.g., Aziz and 

Settari, 1979). As a result, the fracture relative permeability is commonly selected in 

estimating such mobility when local flow is towards the matrix. However, this scheme is 

physically incorrect, because of the inherent anisotropy of the fracture-matrix medium at 

this scale. The fracture relative permeability functions are properties for flow along 

fractures, determined independently from matrix flow, for example, by laboratory studies 

(e.g., Persoff and Pruess, 1995). In general, fracture-matrix flow (or interaction) occurs 

perpendicular to fracture planes, which is controlled mainly by matrix flow properties. 

Therefore, the fracture relative permeability used in this case is physically incorrect and 

may lead to unphysical solutions or significant numerical errors. 

The objective of this study is to develop a physically based upstream weighting 

scheme for determining relative permeability functions that can be generally applicable 

to calculating multiphase flow between fractures and the rock matrix using a dual-

continuum concept. Specifically, the proposed mobility-weighting approach has been 

implemented into two multiphase reservoir simulators to demonstrate its application. In 

addition, we attempt to verify the proposed weighting scheme by using two analytical 

solutions and published laboratory results. The new method is shown to be accurate, 

numerically efficient, and easy to implement in existing dual- or multiple-continuum 

models in reservoir simulators.  

 

2. Mathematical Formulation 

 

In the dual-continuum approach, multiphase flow processes in fractured rock are 

described separately, using a doublet of governing equations for the two continua: 

fracture and matrix. This conceptualization results in a set of partial differential equations 

for flow in either continuum, which are in the same form as that for a single porous 

medium. In this work, the multiphase flow system, assumed in an isothermal, fractured 

porous formation, consists of three phases: gas (air), water, and NAPL (or oil), in which 

two-phase flow or the Richards’ equation (1931) is considered as a special case. 

Although each of the three phases contains a number of components, they are treated here 
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as a single “pseudo-component” with averaged properties of the fluids. In addition, the 

three fluid components (gas, water, and NAPL) are assumed to be present only in their 

associated phases. Each phase flows in response to its pressure gradients, gravitational, 

and capillary forces, according to the multiphase extension of Darcy's law.  

In an isothermal system containing three mass components, three mass balance 

equations are needed to describe flow and transport in the fracture and matrix blocks. For 

flow of phase β (β =g for gas, β = w for water, and β = o or n for NAPL), 

 

( ) ( ) βββββ +ρ•−∇=ρφ
∂
∂ qS
t v        (2-1) 

 

where the Darcy velocity of phase β is defined by: 

 

( )DgP
kk r ∇ρ−∇
µ

−= ββ
β

β
βv            (2-2) 

 

In Equations (2-1) and (2-2), ρβ is the density of phase β under reservoir conditions; φ is 

the effective porosity of the medium; µβ is the viscosity of phase β; Sβ is the saturation of 

phase β;  Pβ is the pressure of phase β;  qβ is the sink/source term of phase (component) β 

per unit volume of formation; g is gravitational acceleration; k is the absolute/intrinsic 

permeability of the formation; krβ is relative permeability to phase β; and D is depth from 

a datum. 

The governing equation of mass balance for three-phase fluids, Equation (2-1), 

needs to be supplemented with constitutive equations, which express all the secondary 

variables and parameters as functions of a set of primary variables of interest. In 

particular, the relationships include relative permeability and capillary pressure functions 

as well as other PVT data. In addition, the initial and boundary conditions of the system 

are also needed to complete the description of multiphase flow through fractured or 

porous media. 
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3. Numerical Formulation 

 

3.1 Discrete Equations 

 

 The multiphase flow equations, as discussed in Section 2, have been implemented 

into a general-purpose two-phase code TOUGH2 (Pruess et al., 1999) and a three-phase 

reservoir simulator MSFLOW (Wu, 2000b).  As implemented numerically, Equation (2-1) is 

discretized in space using an integral finite-difference or control-volume scheme for a porous 

and/or fractured medium. The time discretization is carried out with a backward, first-order, 

finite-difference scheme.  The discrete nonlinear equations for water, NAPL, and gas flow at 

node i are written as follows:   

 

( ) ( ){ } 1n
i

j

1n
ji,

in
i

1n
i QF

t
VSS

i

+
β

η∈

+
βββ

+
ββ +=

∆
ρφ−ρφ ∑      (3-1) 

(for β = g, w and o). 

 

where superscript n denotes the previous time level; n+1 is the current time level; Vi is 

the volume of element i (porous or fractured block); ∆t is time step size; ηi contains the 

set of neighboring elements (j) (porous or fractured) to which element i is directly 

connected;  ji,Fβ  is the mass flow term for phase β between elements i and j; and Qβi is 

the mass sink/source term at element i, of phase β. 

  The “flow” term ( ji,Fβ ) in Equation (3-1) for single-phase, Richards’, or 

multiphase flow is described by a discrete version of Darcy’s law. This is the mass flux 

of fluid phase β along the connection is given by  

 

[ ]ijji2/1ij,ji,F ββ+ββ ψ−ψγλ=        (3-2) 

 

where λβ,i j+1/2  is the mobility term to phase β, defined as  
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and subscript ij+1/2 denotes a proper averaging or weighting of properties at the interface 

between two elements i and j, discussed in the sections below, and krβ is the relative 

permeability to phase β. In Equation  (3-2), ijγ  is transmissivity and is defined differently 

for finite-difference or finite-element discretization. If the integral finite-difference 

scheme (Pruess et al., 1999) is used, the transmissivity is calculated as 

 

ji

2/1jiji
ji dd

kA
+

=γ +         (3-4) 

 

where ijA  is the common interface area between connected blocks or nodes i and j;  di is 

the distance from the center of block i to the interface between blocks i and j; and kij+1/2 is 

an averaged (such as harmonic weighted) absolute permeability along the connection 

between elements i and j,   

The flow potential term in Equation (3-2) is defined as 

 

i2/1ji,ii DgP +βββ ρ−=ψ             (3-5) 

 

where Di is the depth to the center of block i from a reference datum. 

Discrete Equation (3-1) has the same form regardless of the dimensionality of the 

model domain, i.e., it applies to one-, two-, or three-dimensional analyses of flow through 

fractured or porous media. In our numerical model, Equation (3-1) is written in a residual 

form and is solved using Newton/Raphson iteration.  
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3.2 Handling Fractured Media 

 

The technique used in this work for handling multiphase flow through fractured 

rock follows the dual-continuum methodology (Warren and Root, 1963; Pruess and 

Narasimhan, 1985). This method treats fracture and matrix flow and interactions using a 

multi-continuum numerical approach, including the double- or multiporosity method, the 

dual-permeability method, and the more general MINC method (Pruess and Narasimhan, 

1985). It can be shown that the same continuum concept is also applicable to multiphase 

flow though a discrete fracture network. 

 The multiphase flow formulation, Equations (2-1) and (3-1), is applicable to both 

single-continuum and multi-continuum media. Using the dual-continuum concept, 

Equations (2-1) and (3-1) can be used to describe multiphase flow both in fractures and 

inside matrix blocks, as well as fracture-matrix interaction. However, special attention 

needs to be paid to treating fracture-matrix flow. The flow between fractures and the 

matrix is still evaluated using Equation (3-2); however, the transmissivity for the 

fracture-matrix flow is given by 

 

FMl
MFM

ji
kA

=γ ,         (3-6) 

 

where FMA  is the total interfacial area between fractures and the matrix of elements i and 

j (one of them is a fracture and the other a matrix block);  kM is the matrix absolute 

permeability along the fracture-matrix connection; and FMl  is a characteristic distance for 

flow crossing fracture-matrix interfaces, which can be determined for idealized 1-D, 2-D 

and 3-D dimensional rectangular matrix blocks when using the double-porosity model 

(Warren and Root, 1963).  
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3.3 Mobility Weighting Scheme 

 

The appropriate spatial weighting scheme for averaging flow properties, such as 

the mobility of Equation (3-3) in a heterogeneous formation has been much debated in 

reservoir simulation and groundwater-modeling literature (Peaceman, 1977; Huyakorn 

and Pinder, 1983). Single-point or fully upstream weighting has been the exclusive 

approach for averaging mobility or relative permeability in calculating flow term, using a 

discrete Darcy’s law for multiphase flow in heterogeneous petroleum reservoirs (Aziz 

and Settari, 1979). The reasons behind the early application of the conventional upstream 

weighting scheme for relative permeability were based on several physical arguments, 

such as the need for upstream weighting to initialize imbibition into completely dry rock. 

In addition, the upstream weighting approach was found to be necessary to avoid 

incorrect solutions in immiscible displacement (hyperbolic) problems (Aziz and Settari, 

1979).  

Recently, several theoretical studies (Forsyth et al., 1995; Forsyth and Kropinski, 

1997) have shown that the upstream weighting scheme, if used with the control-volume 

discretization of the Richards’ equation, will satisfy monotonicity conditions regardless 

of time step or mesh size. It will guarantee that converged numerical solutions are 

physically correct, while other weighting schemes, such as central weighting, may 

converge to an incorrect, unphysical solution (Forsyth and Kropinski, 1997). However, 

determining flow along fracture-matrix connections (i.e., flow across fracture-matrix 

interfaces in the direction perpendicular to fracture planes) is different from fracture-

fracture flow and the conventional upstream weighting scheme may no longer be 

applicable. This is because fracture relative permeability functions are fracture flow 

properties describing flow along fractures, determined independently from matrix flow. 

Conversely, fracture-matrix flow or interaction normally occurs along the directions 

perpendicular to fractures and is largely controlled by matrix properties or by flow 

resistance within the matrix block. The physical inconsistency in selecting fracture 

relative permeability for calculating fracture-matrix flow may lead to unphysical 

solutions or significant numerical errors. 
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To overcome these limitations, this paper presents a modified upstream weighting 

scheme for fracture-matrix interaction. This new scheme is based on the principle that the 

capillary pressure is continuous at the fracture-matrix interface, and the assumption that 

there is instantaneous local equilibrium in pressure for each phase on the matrix surface 

between fracture and matrix systems. This should hold true for most subsurface fractured 

reservoirs, because fracture aperture is normally very small and fracture lateral 

boundaries are defined by matrix surfaces. Any dynamic changes in fractures, such as 

capillary pressures, could be instantaneously equilibrated locally with that at contacted 

matrix surfaces. As a result, the matrix relative permeability at the matrix surface can be 

readily determined as a function of fracture capillary pressure, or the matrix saturation 

corresponding to that fracture capillary pressure. Therefore, the new scheme, when the 

upstream direction for fracture-matrix flow is at the fractures, uses the matrix relative 

permeability function (instead of the fracture relative permeability function, as in the 

conventional upstream weighting scheme) to calculate the mobility. Physically, this is 

equivalent to evaluating flow through the fracture-matrix interface into the matrix with 

the effective matrix permeability at that interface, obviously a more reasonable approach. 

The proposed weighting scheme is still dependent on the upstream fracture condition, 

and therefore does not lose the advantages of upstream schemes. In addition, in case 

fracture-matrix flow is from matrix to fractures, such as in a situation of drainage or flow 

between globally connected fractures or along global or local matrix-matrix connections, 

the conventional upstream weighting scheme should still be used. We call this hybrid 

scheme capillary pressure-based weighting or physically based upstream weighting. 

Within the context of the dual-continuum concept, the proposed approach can be 

applied to different matrix discretizations, such as double-porosity, dual-permeability, or 

MINC grids. We have implemented the proposed physical upstream weighting scheme 

into two multidimensional reservoir simulators and conducted a series of numerical 

experiments with all the commonly used dual-continuum models. In all test cases, this 

new weighting scheme is found to work efficiently, similarly to using the traditional 

single-point upstream weighting, without numerical difficulties. Note that this new 

scheme should be applicable for discrete fracture-network models as well. 
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 Note that implementation of the new weighting scheme, though straightforward, 

requires modifying existing reservoir simulators. Alternatively, following the same 

physical reasoning as above, we can implement the scheme by creating a matrix mesh 

without modifying reservoir simulators. This requires generation of a thin skin-layer cell, 

with a tiny volume fraction, along the matrix surface for every matrix block. Then a 

simulation using a grid with skin-layer matrix discretization with traditional upstream 

weighting may achieve similar results to that of the physical upstream weighting of the 

new scheme, as long as the skin cell is sufficiently small. This is because it takes little 

time to equilibrate fractures with the matrix-surface skin cell, and fracture-matrix flow is 

equivalent to the flow between the matrix-surface skin cell and the inside or majority 

portion of the matrix block. This matrix-matrix flow is then treated correctly using the 

upstreamed matrix properties with the conventional weighting scheme. We show in the 

following sections that adding a thin skin-layer approach provides better results as 

compared to the traditional upstream weighting scheme in modeling fracture-matrix 

interaction. It should be mentioned, however, that adding a skin matrix layer in a double-

porosity grid increases the number of gridblocks by 50%. How small the added skin cells 

should be needs to be determined by numerical experiments. In addition, the small 

volume of skin-layer cells reduces attainable time steps. These factors should be taken 

into account when applying these modeling approaches.  

 

4. Validation and Application Examples 

 

In an effort to examine and verify the proposed mobility-weighting scheme in this 

section, we present three validation and application examples. The proposed physical 

upstream weighting scheme has been implemented in the two reservoir simulators 

TOUGH2 (Pruess et al., 1999; Wu et al., 1996) and MSFLOW (Wu, 2000b), which are 

used in the following application examples. The first two examples compare numerical 

simulation results with analytical solutions for Richards’ equation (Wu and Pan, 2003; 

2004). The third case is to match published laboratory experiment results of water 

imbibition and displacement conducted on fractured cores (Kazemi, 1979). 
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4.1 Comparison with the Analytical Solution for Imbibition into a Single Matrix 

Block 

  

 An analytical solution recently derived for water imbibition into an unsaturated 

cubic matrix block, using the Richards’ equation (Wu and Pan, 2003), is applied here to 

examine numerical simulation results with the new mobility-weighting scheme. We 

select a 1-D spherical flow analytical solution in this study, which requires the following 

special forms of relative permeability krw and capillary pressure Pc,  

 

 ( )α= wkwrw SC)S(k         (4-1) 

 

and  

 

 ( ) β−=−≡ wpwgwc SCPP)S(P        (4-2) 

 

where Pg is a constant air (or gas) pressure, kC  and pC (Pa) are coefficients, α  and β  are 

exponential constants, respectively, of relative permeability and capillary-pressure functions, 

and wS is the normalized water saturation, 

 

 
wr

wrw
w

S1
SSS

−
−

=         (4-3) 

 

with wrS being the residual water saturation. In addition, the relative permeability and 

capillary pressures are correlated by the following condition:  

 

 1+β=α          (4-4) 

 

 To examine the new weighting scheme for imbibition into a matrix block, numerical 

simulations are performed using the TOUGH2 code, which incorporates the same relative 
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permeability and capillary pressure functions, Equations (4-1) and (4-2), as required by the 

analytical solutions.  

 The example problem deals with transient water imbibition into a 1 × 1 × 1 m’s low 

initial water saturation matrix cube, which is surrounded by a uniform fracture network of 

three orthogonal sets with constant liquid saturation. The imbibition starts at t = 0, owing to 

nonequilibrium in capillarity between the fracture and matrix systems, imposed as the 

boundary condition to the matrix surface. For comparison, the imbibition process is modeled 

by both the analytical and numerical solutions. In the analytical solution, the continuity 

condition in capillary pressure is imposed on the matrix surface, i.e., the matrix block surface 

is subject to a constant saturation condition. The numerical model uses one double-porosity 

grid and one MINC grid. The MINC grid subdivides the matrix cube into two elements, and 

the first matrix element is a tiny-volume, skin-layer cell with a volumetric fraction set at 

0.0001 of the original matrix volume.  

 The fracture-matrix parameters used for the example are listed in Table 4-1. Note 

that in the numerical model, fracture relative permeability and capillary pressure functions 

are also needed, for which van Genuchten relations (1980) are selected. One the other hand, 

the analytical solution needs those for the matrix only, defined in Equations (4-1) and (4-2). 

The initial fracture water saturation is 0.012, which corresponds to Sw = 0.99 on the matrix 

surface. It should be mentioned that in this work, we are concerned mainly with multiphase 

exchange at fracture-matrix interfaces, not with detailed spatial distributions of saturation 

within fractures or the matrix. Specifically, we compare the results in terms of mass flux (or 

imbibition rate) and cumulative mass exchange (or imbibition) between the fracture and 

matrix systems, as shown in Figures 1 and 2.  

 Figure 1 presents the results of transient imbibition rates on the matrix surface, 

calculated from the analytical solution and numerical simulations using traditional upstream 

weighting, the proposed new physical upstream weighting, and skin-cell with traditional 

upstream weighting schemes. Comparison of the three numerical model results with the 

analytical solution in Figure 1 clearly indicates that numerical results with the new weighting 

scheme agree the best with the analytical solution during the entire transient imbibing period. 

The simulation results with the skin-layer cell in this case do not match the analytical result 

very well. In contrast, the simulation using the traditional upstream weighting scheme 
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presents the worst comparison, with more than three orders of magnitude lower than the 

results of the analytical solution during the entire transient imbibition period. This is because 

the upstream fracture relative permeability, selected by the traditional approach, significantly 

underestimated the mobility term for fracture-matrix flow. In terms of cumulative imbibition, 

similarly, Figure 2 also shows that the proposed weighting approach matches the analytical 

results very well, while adding a skin layer in matrix discretization provides an intermediate 

result and the traditional weighting scheme gives the worst prediction.  

 Figures 1 and 2 show surprisingly good matches between the results of the proposed 

new scheme and the analytical solution. This is in part due to the use of log-log (Figure 1) or 

semi-log (Figure 2) scales in plots, as well as large errors introduced by the modeling results 

from the other two approaches. Actually, the new weighting scheme with double-porosity 

discretization of the fracture-matrix system also introduces some numerical errors of 50% at 

the very early transient times of 10-7 days (Figure 1). Even larger errors appear at later times 

when the cumulative mass approaches 237 kg (=  φM × VM ×(0.99-SMi) × ρW = 0.3 × 1 × 0.79 × 

1,000), which is at equilibrium with the proposed boundary condition, as shown in Figures 1 

and 2. We could match the flux much better if we used more refined discretization for the 

matrix block in addition to the new weighting scheme (Wu and Pan, 2003). 

  

4.2 Comparison with the Analytical Solution for Transient Radial Flow through 

Unsaturated Fractured Formation 

 

 This section further validates the new weighting scheme using a more realistic 

analytical solution (Appendix A), which describes the transient unsaturated fracture-

matrix interaction for radial flow through a uniform, radially infinite fractured formation, 

consisting of many matrix blocks and fracture sets.  

This verification problem addresses transient flow through a fully penetrating well 

into a uniform, horizontal fractured formation, which is 10 m thick. The fractured formation 

consists of uniform, identical 1 × 1 × 1 m’s cubes of matrix blocks, surrounded by a uniform, 

3-D fracture network. The geological model considered is identical to the Warren and Root 

(1963) conceptual model. Initially, both fracture and matrix are at dry conditions with both 

initial saturations equal to their residual values, respectively. A constant saturation of SW = 
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0.279 is imposed at the wellbore as the inner boundary condition in the beginning, and then 

water is sucked into the formation from the well immediately.   

In the numerical model, a finite reservoir (re = 100 m) of 10 m thickness is used, 

and the disk-type formation is discretized into a one-dimensional radially symmetric 

(primary) grid. The radial domain from rw = 0.1 m to distance re = 100 m is subdivided 

into 500 intervals, with ∆r = 0.005 m for the first 200 elements, and the rest of the 

domain is subdivided into 300 gridblocks following a logarithmic scale. Two numerical 

grids are generated, a regular double-porosity mesh and a MINC mesh with an added, 

thin-skin layer cell to matrix blocks (with a volumetric fraction of 0.0001). The double-

porosity grid represents the matrix system by one mesh locally and is used for 

simulations with the traditional and new upstream weighting schemes, while the MINC 

mesh subgrids each matrix block with 2 nested cells, used for the added skin-cell case.  

 For this problem, fracture-matrix rock and fluid properties are given in Table 4-2. 

Numerical simulations with different weighting schemes and grids are performed using 

the TOUGH2 code. The analytical solution (Appendix A) for fracture-matrix flux is 

evaluated using a numerical Laplace inversion (Wu and Pan, 2004). Three numerical 

simulations were completed for this problem. The first two use the double-porosity grid 

with the two mobility-weighting schemes, i.e., the traditional single-point upstream 

weighting and the proposed physical upstream weighting, and the third simulation is 

based on the MINC mesh with the thin-skin layer cell on matrix surfaces, using the 

traditional upstream weighting. 

 Figure 3 presents fracture-matrix flux distributions along the radial distance at 

one day, simulated by the analytical and three numerical modeling results. Note that the 

physical process simulated in this example is extremely nonlinear and dynamic. The 

initial liquid saturations are at residual values for both fracture and matrix systems. At the 

beginning, the boundary saturation for fractures at the wellbore jumps to a constant (= 

0.279) (flow rate at the well thus becomes infinitely large). Once imbibed into the 

fractures near the well, the liquid will be drawn by two forces in two different directions, 

flowing along fractures away from the well, and simultaneously imbibing into dry matrix 

blocks. A comparison shown in Figure 3 indicates that both the proposed weighting scheme 

and the skin-cell model do a much better job in matching the actual distribution of fracture-
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matrix mass flux, as determined by the analytical solution, than the traditional weighting, 

double-porosity model. This implies that (in this case) the approaches for applying the 

physical upstream weighting concept or adding a skin layer better capture these physical 

processes by selecting physically correct relative permeability in estimating fracture-matrix 

interaction. Figure 3 clearly shows that in general the traditional upstream weighting scheme, 

by selecting a fracture relative permeability function to calculate fracture-matrix flow, cannot 

match the analytical results. Near the well, both the proposed new scheme and adding a skin 

layer cause an overestimate in fracture-matrix mass flux; while near the front of water 

imbibition in fractures, away from the well, the result from the new weighting matches 

slightly better with the analytical solution. 

 Figure 4 shows a comparison between cumulative or net fracture-matrix mass 

exchange, calculated by the analytical solution, and the three numerical model results. Note 

that the cumulative flow of Figure 4 is not the net amount of the actual mass exchange at a 

distance of r for the time. Rather this value represents a cumulative mass exchange at the 

location and the time if the fracture-matrix interface area were 1 m2, which is determined by 

integrating fracture-matrix fluxes over the time at the location (Appendix A). Therefore, the 

cumulative flow of Figure 4 reflects integrated or accumulated effects of fracture-matrix 

interaction for the problem. Similar to Figure 3 with fracture-matrix fluxes, Figure 4 

indicates that adapting the new weighting scheme or adding a skin-cell also matches 

cumulative mass exchanges and their spatial distributions well, while the traditional 

weighting again leads to significant errors in estimating cumulative results.  

 Many more numerical experiments and comparisons (using different parameter sets, 

and boundary and initial conditions) have been carried out. All the tests and comparisons 

similar to those shown in Figures 3 and 4 indicate that the proposed new weighting scheme 

or the skin-cell simulation is able to closely match analytical solutions for unsaturated radial 

flow problems, while in general the traditional weighting method cannot. It should be 

mentioned that as shown in Figures 3 and 4, there are certain errors or discrepancies even 

with the “good” matches between numerical and analytical results. These discrepancies are 

caused primarily by the coarse spatial discretization of matrix blocks. For example, the 

double-porosity grid used in the numerical models cannot resolve better approximation of 
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pressure gradients or flow rates near fracture-matrix interfaces, which contributes to the 

numerical errors shown in Figures 3 and 4. Further discussions of the spatial discretization 

errors are beyond the scope of this paper.    

 

4.3 Comparison with Laboratory Experimental Results 

 

 Kazemi (1979) presented a series of laboratory experimental results of water 

imbibition into fractured matrix cores to displace oil. The laboratory tests were conducted 

on three sets of artificial fractured cores using cylindrical and rectangular blocks, with 

one fracture along the long axis for each set. The cylindrical and rectangular matrix 

blocks were actually cut from Berea sandstone. The laboratory model we consider here 

consists of a fractured core with two brick-type matrix blocks. Each matrix block has a 

brick shape with dimension of width, height, and length (50.8 × 50.8 × 101.6 mm’s) as 

shown in Figure 5. The fracture formed between the two matrix cores has an aperture of 

0.30 mm. The experimental data used in this study was from Test 38423 (Kazemi, 1979) 

as an example. In the experiment, flow channels were left open only at the inlet and 

outlet ends of the fracture (i.e., for water injection and for oil and water flow out), and 

side fracture and matrix surfaces were sealed. Initially, the fracture and matrix system 

was fully saturated uniformly with oil (diesel), and then water was injected with a 

constant rate at the inlet (Figure 5) to displace the oil. 

 Basic model experimental and modeling parameters are listed in Table 4-3. The 

relative permeability and capillary pressure curves used are shown in Figures 6 and 7, 

respectively. Note that relative permeability curves for both fracture and matrix, shown in 

Figure 6, were estimated using the equations given in Kazemi (1979), and the matrix 

capillary pressure curve was taken from the capillary-pressure curve on the Berea core of 

Figure 12 in Kazemi (1979). However, several important parameters were not provided 

in Kazemi (1979), including residual water saturation, residual oil saturation, and fracture 

capillary pressure curves. Actual values used for these missing parameters were 

determined in this work by model calibration, with the final estimates given in Table 4-3 

and Figures 6 and 7.  
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 Here, this test is analyzed using a double-porosity approach (equivalent to the 

explicit-fracture model in this case) to examine the numerical scheme for handling 

fracture-matrix interaction under multiphase flow conditions. The fracture-matrix set of 

Figure 5 is treated as a 2-D system along the longitudinal (x) direction (from inlet to 

outlet). Because of the symmetry, only half of the 2-D model domain (one matrix block 

and half the fracture) is discretized into a double-porosity grid, using a 1-D parallel 

fracture concept, with one (actually half) fracture element corresponding to one matrix 

element in the transverse direction (perpendicular to the fracture plane). Along the x 

direction, a uniform linear grid of 10 elements is generated for both the fracture and the 

matrix block, with a uniform grid spacing of ∆x = 10.16 mm.  

 We have performed several model calibration analyses to estimate the missing 

model parameters. The final simulation results using the proposed physical upstream 

weighting scheme are compared with the laboratory experimental data in Figure 8. Figure 

8 shows excellent agreement between measured and simulated volumetric fractional oil 

recovery versus pore volume of water injected. This result indicates that the proposed 

new upstream mobility-weighting scheme is able to capture the main factors that control 

fracture-matrix interaction during the oil-water displacement for this test problem.    

 

5. Summary and Concluding Remarks 

 

 We have presented a physically based upstream weighting scheme for modeling 

multiphase fracture-matrix flow and interaction. This new approach is based on 

continuity of capillary pressure at the fracture-matrix interface in estimating physically 

correct relative permeability for multiphase flow between fractures and the matrix. This 

new conceptual model overcomes a serious flaw that exists in most current simulation 

practice when estimating flow mobility for fracture-matrix flow terms using the 

conventional upstream weighting method. Numerically, the new scheme uses exactly the 

same dual-continuum grids, which will otherwise be used with the traditional model 

approaches, without requiring an additional computational burden or using refined grids, 

to achieve not only accurate but also physically correct results for fracture-matrix 

interaction. 
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To verify the proposed mobility-weighting scheme, we carried out two theoretical 

studies in this work. The new mobility-weighting method was used to simulate an 

imbibition process into a single unsaturated matrix cube, and unsaturated flow in a 

radially fractured formation with fully transient fracture-matrix interaction. In both cases, 

the proposed physical upstream weighting scheme is found to provide accurate 

simulation results when compared with analytical solutions. It is also found that the 

conventional weighting scheme will result in significant errors in estimating fracture-

matrix flow in modeling the same physical processes. In the third case, we sought to 

match published laboratory results for oil-water displacement through a fractured core. 

Our proposed approach proved able to match laboratory experimental results of fracture-

matrix interaction. 

An alternative numerical technique to enforce relative permeability consistent 

with capillary continuity at fracture-matrix interfaces was also explored. It consists of 

employing an additional gridblock to represent a thin matrix interface layer with the 

traditional upstream weighting scheme. This paper shows that adding a skin-layer cell to 

matrix blocks, as long as the volume of the skin cell is sufficiently small or the mobility 

between fractures and the skin cell is large, could achieve the similar results as the 

proposed new weighting scheme.   

 In this work, we demonstrate that the proposed, physical upstream weighting 

method is accurate, numerically efficient, and easy to implement into existing dual-or 

multiple-continuum reservoir simulators. It is recommended as a valid modeling 

approach for field applications with both dual-continuum and discrete fracture models. 
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Appendix A. Derivation of Analytical Fracture-Matrix Flux 

 

 An analytical solution describing transient unsaturated flow is derived for 

rigorous treatment of fracture-matrix interaction in a uniform fractured radial formation 

(Wu and Pan, 2004). The analytical solution relies on the assumption that the specially 

correlated relative permeability and capillary functions, Equations (4-1) and (4-2), are 

satisfied, respectively, for fractures and the matrix. In addition, it further requires that the 

two exponential parameters are specified as α= 2 and β = 1 in Equations (4-1) and (4-2). 

Under these conditions, along constant liquid saturation at the wellbore boundary and 

constant initial saturations in both fracture and matrix systems, the analytical solution is 

given in the Laplace space (Wu and Pan, 2004) as 
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where  MDS  and FDS  are the normalized matrix and fracture saturations, respectively, in 

the Laplace space, defined similarly by Equation (4-3); CpM and CpF are coefficients Cp of 

the capillary function, Equation (4-2), for matrix and fracture, respectively; p is the 

Laplace variable; S0D is the normalized fracture saturation at the well; pA3=σ , K0 is the 

modified Bessel function of the second kind of zero order; and x2 is defined as:  
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where subscript M denotes matrix and F for fracture; rw is the well radius; B is fracture 

spacing or the dimension of matrix cubes(m); φM and φF are matrix and fracture porosities; 

SMr and SFr are residual saturations, respectively, of fracture and matrix systems; and DF or 

DM is the moisture diffusivity term for fracture or matrix, respectively,  defined (Wu and Pan, 

2004) as:  
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with a dimension of m2/s. Subscript ξ  is an index for fracture (ξ = F) or matrix (ξ = M); Ckξ 

and Ckξ are coefficients Ck of the relative permeability function, Equation (4-1), for 

matrix and fracture, respectively. 

 The analytical solution uses the following dimensionless variables: dimensionless 

radial distance, dimensionless spherical distance inside matrix blocks, and dimensionless 

time:   
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where r is the radial distance from the well; x is the distance from a nested cross sectional 

surface within matrix blocks (having an equal distance to the matrix surface or equivalent 

to spherical radial distance) to the center of cube; and t is time.  

 From the analytical solutions, Equations (A-1) and (A-2), the fracture-matrix 

mass flux in the Laplace space can be derived from its definition: 
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where FMq  is the Laplace transformed transient fracture-matrix flux and a unit of kg/s/m2 in 

real space as a function of time and radial distance. Similarly, a cumulative fracture-matrix 

mass flow or exchange rate (QFM) can be derived as 
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In the Laplace space, the cumulative rate is determined by 
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Note the cumulative fracture-matrix mass flow rate has a unit of kg/m2, which is not the net 

amount of mass exchange, but an integrated exchange rate per unit area. 
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Table 4-1. Parameters for the comparison problem of imbibing into a single-matrix 

block  

Parameter Value Unit 

Effective matrix porosity φM = 0.30  

Absolute matrix permeability kM = 1.0 × 10-15 m2 

Water  density ρw = 1,000 kg/m3 

Water viscosity µw = 1.0 × 10-3 Pa•s 

Residual matrix saturation Swr,M = 0.2  

Initial matrix saturation SMi= 0.2  

Saturation on matrix surface Sb= 0.2 and 0.8  

Coefficient of matrix relative 

permeability 

Ck = 1.0  

Exponent of matrix relative 

permeability 

α = 2.0  

Coefficient of matrix capillary 

pressure 

Cp,M = 1.0× 104 Pa 

Exponent of matrix capillary 

pressure 

β = 1.0  

Initial fracture saturation SFi= 0.012  

Residual fracturex saturation SFr = 0.01  

Fracture van Genuchten 

constant m 

mvG = 0.611  

Fracture van Genuchten α αvG = 1.0× 10-3 Pa-1 
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Table 4-2. Parameters for the comparison problem with radial unsaturated flow in 
fractured formation 

Parameter Matrix Fracture Unit 

Matrix dimension B = 1  m 

Porosity φM = 0.30 φF= 0.001  
Permeability kM = 1.0 × 

10-15 
kF = 1.0 × 
10-12 

m2 

Residual/initial 
saturation 

SMr = 0.2 SFr = 0.2   

Coefficient of 
permeability 

CkM = 1.0 CkF = 0.2   

Coefficient of 
capillary pressure 

CpM = 1.0× 
104 

CpF = 1.0 × 
103 

Pa 

Saturation at well S0= 0.279  
Fluid viscosity µw = 1.0 × 10-3  Pa•s 
Fluid density ρw = 1,000 kg/m3 
Wellbore radius rw = 0.1 m 
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Table 4-3 Parameters used in the comparison with laboratory testing results 

(Kazemi, 1979) 

Parameter Value Unit 

Fracture aperture b = 0.0003 m 

Fracture porosity φF  = 1.0  

Matrix porosity φM = 0.21  

Absolute fracture permeability kF = 1 × 10-11   m2 

Absolute matrix permeability kM = 4,23 × 

10-13   

m2 

Water density ρw = 1,000  kg/m3 

Water viscosity µw = 1 × 10-3  Pa • s 

Oil (diesel) density ρw = 828  kg/m3 

Oil (diesel)  viscosity µw = 4.6 × 10-

3  

Pa • s 

Residual fracture water saturation Swr,F = 0.10  

Residual matrix water saturation Swr,M = 0.20  

Residual fracture oil saturation Sor,F = 0.0001  

Initial fracture water saturation Swi,F = 0.00  

Initial matrix water saturation Swi,M = 0.00  

Water injection rate q = 2.568 × 

10-5 

m3/d 
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Figure 1. Comparison of calculated water imbibing rates from analytical and 

numerical solutions into a cubic matrix block 



 30

Time (d)

C
um

ul
at

iv
e

Im
bi

bi
tio

n
(k

g)

10-4 10-2 100 102 104 106 1080

50

100

150

200

250
Traditional Weighting
New Weighting
Skin-Cell/Traditional Weighting
Analytical Solution

 
Figure 2. Comparison of calculated cumulative mass imbibition from analytical and 

numerical solutions into a cubic matrix block 
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Figure 3. Comparison of fracture-matrix mass fluxes along the radial distance at 1 day, 

calculated using the analytical solution and numerical simulations using the 
double-porosity model with two different mobility-weighting schemes, as 
well as the mesh with a thin-skin layer cell for matrix blocks 

 



 32

Radial Distance (m)

C
um

ul
at

iv
e

Fr
ac

tu
re

-M
at

rix
Fl

ow
(k

g/
m

2 )

1 2 3
10-3

10-2

10-1

100

101

102

Traditional Weighting
New Weighting
Skin-Cell/Traditional Weighting
Analytical Solution

 
Figure 4. Comparison of cumulative fracture-matrix mass exchange along the radial 

distance at 1 day, calculated using the analytical solution and numerical 
simulations using the double-porosity model with two different mobility-
weighting schemes, as well as the mesh with a thin-skin layer cell for matrix 
blocks 
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Figure 5. Schematic of fractured cores used the experimental studies (Kazemi, 

1979) 

 

 

 

 

 

 

 

 

 



 34

Water Saturation

R
el

at
iv

e
P

er
m

ea
bi

lit
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

krw,M
krw,F
kro,M
kro,F

 
Figure 6. Relative permeability curves for fractures and matrix used in matching 

laboratory experiment results 
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Figure 7. Capillary pressure curves for fractures and matrix used in matching 

laboratory experiment results 
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Figure 8. Comparison of simulation results with experimental data (Kazemi, 1979) 

 

 

 

 


